

Software: Data reduction

X-rays

- IDL based.
- Laboratory and synchrotron data
- http://www.pa.msu.edu/cmp/billingegroup/programs/PDFgetX2/

Neutrons

- GLASS package / Perl/TK frontend
- Automatic data reduction on NPDF
- http://pdfgetn.sourceforge.net/

Data modeling 'PDFFIT' style

Software: Data modeling

PDFgui

- Part of DANSE project.
- http://www.diffpy.org/

- Calculation and refinement of small model system (< 1000 atoms)
- 'Rietveld' type parameters: lattice parameters, atomic positions, displacement parameters, ..
- New possibilities: Refinements as function of r range!
- Automatic refinement of multiple datasets as function of T or x.
- Intuitive GUI.
- Engine pdffit2 can also be used in command mode.

PDFfit: Refinement of a small structural model

- "Real space Rietveld"
- Refinement of structural parameters: lattice parameters, atom positions, occupancies, adp's, ...
- Small models (<200 atoms).
- Corrections for Q_{max}, instrument resolution, correlated motion.
- Software: PDFfit, PDFfit2 and PDFGui.

K.L. Page, Th. Proffen, S.E. McLain, T.W. Darling and J.A. TenCate, Local Atomic Structure of Fontainebleau Sandstone: Evidence for an Amorphous Phase?, *Geophys. Res. Lett.* 31, L24606 (2004).

Refinement range – length scales in structure

- Simulated structure of 20x20x20 unit cells.
- Matrix (M): blue atoms
- Domains (D): red atoms, spherical shape, d=15Å.
- Simulated using DISCUS.

Th. Proffen and K.L. Page, **Obtaining Structural Information from the Atomic Pair Distribution Function**, *Z. Krist.* **219**, 130-135 (2004).

Refinement range – length scales in structure

- Top: Single-phase model with blue/red fractional occupancies (O).
- Bottom: Refinement of same model for 5Å wide sections.
- Extensions:
 - Multi phase models
 - Modeling of boundary
 - R-dependent refinable mixing parameters

Refinement range – the mystery of LaMnO₃

DISTORTED OR NOT DISTORTED?

Study of the Jahn-Teller distortion in LaMnO₃

Calculating a PDF ...

Calculating a PDF from a structural model:

$$G(r) = \sum_{ij} \left[\frac{b_i b_j}{\langle b \rangle^2} \delta(r - r_{ij}) \right] - 4\pi r \rho_0$$

- Thermal motion
 - Small crystal \Rightarrow convolution of $\delta(r-r_{ij})$ with distribution function (*PDFFIT*)
 - Large crystal ⇒ actual displacements
 & ensemble average (DISCUS)
- Termination ripples
 - Multiplication with step function in reciprocal space gives convolution with sin(Q_{max}r)/r in real space.

WISA Lujance

PDF analysis: Analysis of individual peaks

➤ Correlated motion results in sharpening of near neighbor PDF peaks.

Empirical correction

$$\sigma_c = \sqrt{\sigma_0 - \delta/r^2 - \gamma/r}$$

> Future: Extraction of phonons ??

Jeong et al., J. Phys. Chem. A 103, 921 (1999)

 $G(nm^{-2})$

Calculating a PDF: PDFfit

PDF calculated according to

 $G(r) = \sum_{ij} \left| \frac{b_i b_j}{\langle b \rangle^2} \delta(r - r_{ij}) \right| - 4\pi r \rho_0$

In more detail

$$G(r_k, s) = f_s B_k(s) \sum_{p=1}^P f_p G_p(r_k, s)$$

$$G_p(r_k, s) = \frac{1}{N_p r_k} \sum_i \sum_j \left[A_{ij}(p) \cdot T_{ij}(r_k, p) \right]$$

$$-4\pi r_k \rho_0(p)$$

$$B_k(s) = \exp \left[-\frac{(r_k \sigma_Q(s))^2}{2} \right]$$

$$A_{ij}(p) = \frac{c_i(p)c_j(p)b_ib_j}{\langle b \rangle^2}$$

$$T_{ij}(r_k, p) = \frac{1}{\sqrt{2\pi}\sigma_{ij}(p)} \exp\left[-\frac{(r_k - r_{ij}(p))^2}{2\sigma_{ij}^2(p)}\right]$$

Nanoparticles: Particle size

Data modeling 'DISCUS' style

(RMC and DIFFEV)

Software: Data modeling

DISCUS

- Disordered materials simulations
- Refinement via DIFFEV / RMC
- http://discus.sourceforge.net/

Oxford University Press, June 2008

Diffuse package: DISCUS, PDFfit and DIFFEV

- **PDFfit**
 - User defined relation between parameters and refinement variables.
 - Retired!! Multiple structural phases and data sets (neutron and X-ray) supported.
- DISCUS
 - Calculation of Fourier transform, inverse and difference Fourier.
 - Expand structure from asymmetric unit and space group symbol.
 - Structure "statistics": correlations, real space lots, ...
 - PDF calculations.
 - Monte Carlo simulations.
 - Reverse Monte Carlo simulations diffuse scattering & PDF.
 - Symmetry & unit cell transformations.
- DIFFEV: General minimization using evolutionary algorithms
- **KUPLOT**: General plotting program
- Common features
 - Command language including loops and IF statements.
 - Online help function
 - UNIX or Windows operating system.
 - Binary or source code distribution.
 - Written in FORTRAN-77 (and some C).

Th. Proffen and R.B. Neder, J. Appl. Cryst. 30, 171-175 (1997).

Th. Proffen and S.J.L. Billinge, J. Appl. Cryst. **32**, 572-575 (1999).

Link: http://discus.sourceforge.net

Software: RMCprofile (Matt Tucker lecture)

RMCprofile

- Atomic configurations ~600 to 20000+ atoms
- Fit both X-ray and neutron F(Q)
- Fit G(r)
- Fit Bragg profile (GSAS tof 1,2 & 3)
- Polyhedral restraints
- Coordination constraints
- Closest approach constraints
- Produce a static 3-D model of the structure (a snap-shot in time)
- Link: http://www.isis.rl.ac.uk/RMC

DIFFEV: Refining model parameters

PDFfit and RMC

- Refine structure directly in terms of atom coordinates etc..
- Difficult for complex systems

Alternative

- Refine parameters of a structural model and not each atom.
- Example nanoparticle: diameter, atom spacing, stacking fault probability, ...
- Choose minimization here DIFFEV

Differential Evolution

Example: ZnSe nanoparticles - Model

{110} and {001}

create a large single Wurtzite layer A/B

Stack along c (with faults)

Cut to proper size

Calculate PDF / powder pattern

Repeat and average

Repeat with new set of parameter using a Differential Evolutionary Scheme

Software: DISCUS and DIFFEV

Example: ZnSe nanoparticles - Results

- Results:
 - a=3.973Å, c=6.494Å
 - Diameter ~26Å
 - Stacking fault prob. 70%

C. Kumpf, R.B. Neder et al., **Structure determination of CdS and ZnS nanoparticles: Direct modeling of synchrotron-radiation diffraction data**, *J. Chem. Phys.* **123**, 224707 (2005).

exp calc

UNCLASSIFIED

Get started at

http://skywalker.lansce.lanl.gov/lujan/instruments/NPDF/school.shtml

